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Abstract

Mineral dust supplied to remote ocean regions stimulates phytoplankton growth
through delivery of micronutrients, notably iron (Fe). Although attention is usually paid
to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typ-
ically the dominant phase in mineral dust. The mineralogy and chemistry of clay min-
erals in dust particles, however, are largely unknown. We conducted microscopic iden-
tification and chemical analysis of the clay minerals in Asian and Saharan dust parti-
cles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB)
techniques and analyzed by transmission electron microscopy (TEM) combined with
energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that
clay minerals occurred as either nano-thin platelets or relatively thick plates. The nano-
thin platelets included illite, smectite, illite—smectite mixed layers and their nanoscale
mixtures (illite—smectite series clay minerals, ISCMs) which could not be resolved with
an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed
that the average Fe content was 5.8 % in nano-thin ISCM platelets assuming 14 %
H,O, while the Fe content of illite and chlorite was 2.8 and 14.8 %, respectively. In ad-
dition, TEM and EDXS analyses were performed on clay mineral grains dispersed and
loaded on microgrids. The average Fe content of clay mineral grains was 6.7 and 5.4 %
in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of
bulk dusts showed that Saharan dust was more enriched in clay minerals than in Asian
dust, while Asian dust was more enriched in chlorite. The average Fe/Si, Al/Si and
Fe/Al molar ratios of the clay minerals, compared to previously reported chemistries of
mineral dusts and leached solutions, indicated that dissolved Fe originated from clay
minerals. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite are
important sources of available Fe in remote marine ecosystems. Further detailed anal-
yses of the mineralogy and chemistry of clay minerals in global aerosols are required
to determine the inputs of Fe available to surface ocean microbial communities.
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1 Introduction

Primary productivity in high-nitrate low-chlorophyll (HNLC) regions of the world’s ocean
has been an important topic because of the roles of this process in regulating atmo-
spheric carbon dioxide levels over glacial-interglacial timescales (Boyd et al., 2000,
2004; Bopp et al., 20083; Jickells et al., 2005; Formenti et al., 2011). Iron (Fe) is a con-
trolling micronutrient for phytoplankton growth in HNLC regions, with deep winter mix-
ing (Tagliabue et al., 2014) and long-range transport of continental aerosols (includ-
ing mineral dust and anthropogenic aerosols) being key Fe sources for surface wa-
ter microbial communities. In addition, the dust-derived Fe supply to low-nitrate low-
chlorophyll (LNLC) regions of the oceans has been shown to control dinitrogen fix-
ation (Moore et al., 2009; Schlosser et al., 2014). Therefore, interest has grown in
recent years regarding atmospheric aerosol transport, inputs to the surface ocean and
the subsequent dissolution of Fe from aerosols (Desboeufs et al., 2001; Jickells and
Spokes, 2001; Hand et al., 2004; Guieu et al., 2005; Meskhidze et al., 2005; Baker
and Jickells, 2006; Buck et al., 2006, 2010; Cwiertny et al., 2008; Journet et al., 2008;
Mahowald et al., 2009; Shi et al., 2009, 2011; Aguilar-Islas et al., 2010; Baker and
Croot, 2010; Fu et al., 2010; Johnson et al., 2010; Paris et al., 2010; Trapp et al., 2010;
Formenti et al., 2011; Rubin et al., 2011; Takahashi et al., 2011; Sholkovitz et al., 2012).

Iron dissolution from aerosols has been represented by fractional Fe solubility
(% Feg), and varies strongly depending on the aerosol source (Mahowald et al., 2005;
Sholkovitz et al., 2012). Sholkovitz et al. (2012) compiled total Fe loading (Fet) and
% Feg for a global-scale set of aerosol samples, and found a hyperbolic trend in the
% Feg as a function of Fe;, which was explained by the mixing of mineral dusts of
high Fet and low % Feg and anthropogenic aerosols of low Fet and high % Feg. How-
ever, mineral dust is an important supply of soluble Fe to the remote ocean, particularly
during dust events originating from desert sources. Ito and Feng (2010) demonstrated
using model simulations that, compared to Asian dust, soluble Fe from combustion
sources contributed a relatively small amount to the soluble Fe supply to the North

15737

Jaded uoissnosiq

Jaded uoissnasiq | Jadeq uoissnosiq | Jaded uoissnasiq

(®
{o

ACPD

14, 156735-15770, 2014

Chemistry and
mineralogy of clay
minerals in Asian and
Saharan dusts

G. Y. Jeong and
E. P. Achterberg

Title Page
Abstract Introduction
Conclusions References

Tables

Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/15735/2014/acpd-14-15735-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/15735/2014/acpd-14-15735-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Pacific Ocean during spring periods. An enhancement of dust % Feg occurs during
long-range transport. The factors responsible for this increase in % Feg are not yet
fully understood, and include the type of Fe-bearing minerals of dust and their reactiv-
ity (Cwiertny et al., 2008; Journet et al., 2008), Fe complexation by organic ligands in
seawater (Kraemer et al., 2005), the photoreduction of Fe in dust particles (Siffert et al.,
1994; Hand et al., 2004; Fu et al., 2010), reactions between dust particles and water
during cloud processing (Desboeufs et al., 2001; Shi et al., 2009), reactions with acidic
gases in the atmosphere (Zhuang et al., 1992; Meskhidze et al., 2003), and changes in
particle size during long-range transport (Jickells et al., 2005; Baker and Croot, 2010).

Information regarding dust mineralogy enables the % Feg of mineral dust to be better
understood, as highlighted by Cwiertny et al. (2008) after an extensive literature review.
The mineralogical factors related to % Feg include solubility, reactivity with atmospheric
acids, grain size, Fe content, and the Fe oxidation state of the minerals. Despite nu-
merous articles on the measurements of % Feg (Sholkovitz et al., 2012 and references
therein), the modeling of dust input (Mahowald et al., 2005, 2009), and the determi-
nations of the aqueous geochemistry of Fe (Baker and Croot, 2010 and references
therein), basic data are still lacking on the properties of Fe-bearing minerals in dust.
Iron (hydr)oxides are an important source of available Fe. However, the quantities of Fe
(hydr)oxides in mineral dust are much lower than the quantity of Fe-bearing silicates.
Mineralogical analyses have shown that clay minerals are the most abundant phases
followed by quartz, feldspars, and calcite in the long-range transported dusts (Glaccum
and Prospero, 1980; Avila et al., 1997; Jeong, 2008; Jeong et al., 2014). The crystal
structures of clay minerals can accommodate a significant quantity of Fe in their octa-
hedral sites. Thus, both the clay minerals and Fe (hydr)oxides should be considered
when investigating their roles in Fe availability (Raiswell and Canfield, 2012).

Journet et al. (2008) reported a higher Fe solubility of clay minerals compared with
Fe oxides, emphasizing the significant role of clay minerals in Fe availability. However,
in the experiments performed by Journet et al. (2008), dissolution work was conducted
for a limited set of clay minerals and Fe (hydr)oxides obtained from rocks. Clay minerals
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in atmospheric dust particles have diverse origins and a wide range of chemical com-
positions and particle sizes, depending upon the lithology, geological setting, and phys-
ical/chemical weathering process in their source regions. The contribution of clay min-
erals to Fe availability should be considered on the basis of the physical and chemical
characteristics of the different clay mineral types in the natural dust. For example, the
Fe content of clay minerals in dust for modeling and dissolution experiments is typi-
cally not known. The separate determination of the Fe content of each clay mineral
species is almost impossible for bulk dust because of the agglomeration of many sili-
cate mineral grains (Falkovich et al., 2001; Shi et al., 2005; Jeong, 2008; Jeong et al.,
2014). This is in contrast to the exact determination of Fe content in the form of Fe
(hydr)oxides using an established selective extraction procedure, such as the method
of Mehra and Jackson (1960). However, the chemical composition of submicron grains
of clay minerals can be determined by energy dispersive X-ray spectrometry (EDXS)
induced by an electron microbeam. EDXS attached to a transmission electron micro-
scope (TEM) is an excellent technique for the chemical and physical characterization
of individual clay mineral grains.

In this study, we report the mineral species, nanoscopic occurrence, and chemical
compositions of the clay mineral grains in individual Asian and Saharan dust particles
obtained by the combined application of TEM and EDXS. Analyses of clay minerals
mixed in particles were conducted on cross-sectional slices of individual dust particles
prepared by focused ion beam (FIB) milling. Clay mineral grains loaded on microgrids
by a conventional procedure were also analyzed by TEM and EDXS. The chemical
compositions of the clay minerals were compared to the reported chemistry of the
bulk dust and their leached solutions to assess the contribution of clay minerals to Fe
availability.
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2 Dust samples and methods

Asian dust events were observed on 17 March 2009, 20 March 2010, 31 March 2012,
and 18 March 2014 in Korea. The dust outbreaks and subsequent migration of the
Asian dusts were traced using dust index images derived from satellite remote sens-
ing, which indicated the source of the four dust events in the Gobi Desert of southern
Mongolia and northern China (30—-46°N, 90-110° E) and their migration to the east
across Korea. Details of the synoptic conditions during the dust outbreaks and migra-
tion of these events were provided in Jeong et al. (2014). The peak concentrations
of particulate matter less than 10 ym in diameter (PM,,) were 428, 1788, 220, and
378 ug m~ in the 2009, 2010, 2012, and 2014 dust events, respectively (Korea Mete-
orological Administration, 2014).

The Asian dusts were sampled using a Thermo Scientific high-volume total sus-
pended particulate (TSP) sampler fitted with Pallflex teflon-coated borosilicate glass-
fiber filters (8in x 10in) or Whatman No. 1441-866 cellulose filters. The 2012 dust
was sampled on a mountain peak at Deokjeok Island (190ma.s.l., 37°13'59"N,
126°08'57"E) off the western coast of Korea for 24h (09:00 Korea Standard Time
(KST) 31 March—08:00 KST 1 April) at a flow rate of 250 Lmin~". The 2009, 2010, and
2013 Asian dusts were sampled using the same procedure on the roof of a four-storey
building at Andong National University (36°32'34"N, 128°47'56"E) over a 12h pe-
riod (09:00-21:00 KST 17 March 2009, 20:00—-08:00 KST 19 March 2010, and 10:00—
22:00KST 18 March 2014).

Saharan dust samples were collected at Cape Verde Atmospheric Observatory
on the island of S&do Vicente, Cape Verde (16°51'50"N, 24°52'3"W) in the eastern
North Atlantic Ocean. Dust was sampled on Sterlitech polypropylene membrane filters
(47 mm diameter, 0.4 um pore size) using a low volume aerosol sampler installed at
the top of a 30 m tower in the period from 7 November 2007 to 14 March 2008 (Car-
penter et al., 2005). The total volume of samples for the individual filters ranged from
50—100 m® at flow rates of 20-30 L min™" for a period of 3-5 days.
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X-ray diffraction (XRD) analysis was conducted to obtain information on the min-
eral composition of bulk samples using a Rigaku Ultima IV diffractometer. A portion
of the filter was cut and immersed in methanol in a 10 mL glass vial. The filter was
agitated in an ultrasonic bath to remove dust particles from the filter. During the agi-
tation, dust particles were disaggregated into clay minerals and other silicate grains.
The suspension was sieved through 270 mesh sieve to remove cellulose fibers and
dried on the glass plate. Then, dust was collected by razor blade. Several milligrams
of dust samples (2-10 mg) were loaded on the 3mm? x 4 mm? cavity of an aluminum
plate. The analytical conditions were 60's counting per 0.03° step in the scan range of
3-65°26, Cu K a radiation, and 45 kV/35 mA. Because the quantity of the samples was
small, the patterns obtained were not suitable for precise quantification. Thus, the com-
positional analysis was deemed semi-quantitative. Mineral compositions were derived
using a SIROQUANT software package (version 4). Since intensity loss was significant
in the lower angle region due to the small sample size irradiated with X-rays, the high
angle region (24.5-65°26) was used for the simulation of the observed XRD pattern.
After the XRD analysis of the bulk dusts, the samples were subjected to ethylene gly-
col and heat treatments for detailed identification of clay minerals. The samples were
wetted with water, smeared, and dried on a glass slide, and subsequently treated with
ethylene glycol vapor at 60 °C in a desiccator for 2 days followed by heating at 350°C
for 30 min.

Electron-transparent thin slices of dust particles (2009, 2012, and 2014 Asian dusts;
28-31 December 2007, 18—-23 January, 23—-26 February, 29 February—4 March, 12—
14 March, 2008 Saharan dusts) were prepared for TEM analysis of clay minerals. Here-
after, the term “particle” refers to individual solid objects suspended in the atmosphere,
while the term “grain” refers to the constituents of the particles. Thin slices (ca. 100 nm
in thickness) of about ca. Gpm2 x 6 um2 size were cut from dust particles using a SlI
NanoTechnology SMI3050TB and a JEOL JIB4601F FIB instrument for Asian and Sa-
haran dusts, respectively. Prior to using the FIB, the dust particles were transferred
onto adhesive carbon film and characterized using a JEOL JSM 6700F field emission
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gun scanning electron microscope (SEM) equipped with an Oxford EDXS system at
5KkV acceleration voltage and 8 mm working distance after being coated with platinum
for electrical conductivity. Dust particles were selected for FIB work on the basis of
mineralogical characteristics identified by SEM-EDXS analysis as reported in Jeong
(2008) and Jeong et al. (2014). Individual Asian dust particles could be selected and
prepared as thin slices by FIB milling because the particles were sufficiently separated
from each other on the filters. However, the Saharan dusts considered in this study
were highly concentrated and aggregated on the filters. Thus, the original atmospheric
particles for FIB milling could not be identified with confidence. However, the purpose of
the TEM analysis undertaken in this study was not to reveal the structures of individual
original dust particles as reported by Jeong and Nousiainen (2014), but to analyze the
chemistry and mineralogy of clay mineral grains. Thus, we prepared thin slices using
FIB milling from the Saharan dust samples.

Clay-mineral grains loaded on microgrids were also prepared for investigation of
Asian (2009, 2010, 2012, and 2014) and Saharan (7—9 November, 13—14 December,
28-31 December 2007, 18-23 January, 29 February—4 March, 12—14 March 2008)
dust. The clay mineral grains suspended in methanol were loaded on to 200 mesh
Cu microgrids covered with a carbon-coated lacey formvar support film by immersing
the microgrids in the suspension with tweezers and subsequent drying on filter pa-
per. Every electron-transparent grain encountered during the movement of stage was
analyzed by EDXS.

The TEM instruments used in this study were a JEOL JEM 2100F field emission gun
STEM at 200kV, a JEOL JEM 3010 TEM for high-resolution imaging, and a JEOL JEM
2010 TEM equipped with an Oxford ISIS EDXS system for chemical analysis. Minerals
in the FIB slices were identified on the basis of lattice fringe images, electron diffraction
pattern, and EDXS data. General chemical formulas of minerals identified in this study
are given in the Table S1. Digital images of the microstructures and lattice fringes were
recorded using a Gatan digital camera, and processed with a Gatan DigitalMicrograph.
To obtain the elemental compositions of clay minerals, the X-ray counts of Si, Al, Fe,
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Mg, Ti, K, and Ca were converted to weight % (wt%) of the elements using the quantifi-
cation procedures given by Cliff and Lorimer (1975). k-factors of the elements for the
conversion were obtained from an analysis of the FIB slices prepared from biotite and
plagioclase of known composition occurring in the Palgongsan granite (Jeong, 2000).
TEM-EDXS analysis often requires a small beam size down to ~ 50 nm to determine
the chemical composition of clay minerals that are mixed with other minerals. The X-ray
generation volume is small due to the thin nature of the FIB slices (~ 100 nm) and small
analysis area. High quality quantitative analysis requires at least 10 000 counts of each
peak for the ideal specimens of large thin and resistant phases (Williams and Carter,
2009). However, such an ideal analytical condition was not obtained for the clay mineral
grains, which were very sensitive to the electron beam because of their structural water,
disorder, and nanocrystallinity. To minimize electron beam damage of the clay mineral
grains, the electron dose was reduced by setting the spot size to four. X-rays of Si, Al,
Fe, Mg, Ti, K, and Ca were counted for 100 s. For clay grains loaded on the microgrids,
0.5-2 pum grains produced sufficient X-ray photons for analysis, while submicron thin
clay grains (ca. < 0.5um) did not. The total X-ray counts of those elements in ISIS
EDXS system were ca. 30000 for the analysis of clay mineral grains loaded on the
grid, and ca. 15000 for the analysis of FIB specimens. The detection limits for these
elements were ca. 0.1 wt%. For Asian dust samples, we conducted 206 analyses of
clay minerals in the 50 FIB slices prepared from 50 dust particles, and 514 analyses
of clay mineral grains loaded on the microgrids. For Saharan dust, we conducted 116
analyses in the 10 FIB slices prepared from 10 particles, and 356 analyses of clay
mineral grains loaded on microgrids. In the calculation of elemental wt%, the total H,O
content of clay minerals was assumed to be 14 wt%, which is the average H,O content
of illite and smectite provided in Table Il and Table XXVII of Weaver and Pollard (1975).
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3 Results and discussion
3.1 Occurrence of clay minerals in dust particles
3.1.1 Asian dust

SEM images reveal micron-size platy grains of clay minerals on the surface of Asian
dust particles (Fig. 1a-1, b-1, and c-1). TEM images of cross-sectional FIB slices show
that clay mineral plates coat the surface of quartz (Fig. 1a-2, a-3, b-2, and b-3), or are
agglomerated (Figs. 1c-2 and 3). Clay mineral grains were classified into two groups:
(1) rather thick, compact grains of illite (Figs. 1a-2, a-3, and b-2), chlorite (Fig. 1b-2),
and kaolinites (not shown here); and (2) loose chaotic, subparallel nano-thin platelets
(Fig. 1a-2, a-3, b-2, b-3, c-2, and ¢-3), which display lattice fringes of ca. 1.0 nm (Fig.
1b-3 and 1c-3) and contained the interlayer cations K and Ca. The nano-thin platelets
were arranged in subparallel patterns to form a fine matrix with the inclusions of thick
and compact clay minerals (Fig. 1a-2, a-3, and b-2). The loose, curved lattices (Fig.
1b-3 and 1¢-3) of nano-thin plates are in contrast to the compact, straight lattices of
larger plates of illite (Fig. 2a), chlorite (Fig. 2b), and kaolinite (Fig. 2c).

Larger compact grains of smectite were not found in the TEM observations of FIB
slices in this study. However, smectite has previously been identified by the XRD analy-
sis of Asian dust treated with ethylene glycol (Jeong, 2008). Thus, smectite is expected
to be present in the form of nano-thin platelets of smectite or illite—smectite mixed lay-
ers. Nano-thin clay mineral platelets displaying 1.0 nm lattice fringes were the major
form of the clay minerals in the Asian dusts. Their varying K and Ca contents suggest
a close mixture and mixed-layering of illite and smectite because K is predominantly
assigned to the cation fixed in the interlayer of illite, while Ca is assigned to the ex-
changeable cation of smectite (Jeong et al., 2004). The mixtures and mixed-layering
of illite and smectite unit layers are common in natural geological environments as
a result of chemical weathering in soils and the low temperature diagenesis of sedi-
ments (Weaver, 1989; Srodon, 1999). However, even using the lattice-fringe imaging,
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unambiguous distinction was not possible between illite and smectite unit layers mixed
at the nano scale because hydrated smectite (unit layer thickness of 1.4-1.6 nm) had
become dehydrated and had contracted to a unit layer of ca. 1.0 nm thickness un-
der the high vacuum in the TEM chamber. Thus, the nanoscale mixtures of nano-thin
platelets with ca. 1.0 nm lattice fringes and containing K and Ca in varying ratios are
collectively referred to here as illite—smectite series clay minerals (ISCM) which are
probably mixtures/mixed-layers of illite and smectite in varying ratios (Fig. 1a-2, a-3,
b-2, b-3, c-2, and c-3). Although thick smectite grains were not observed, illite occurred
as thick compact grains (Fig. 1a-2, a-3, and b-2) as well as nano-thin ISCMs. Chlorite
also occurred as nano-thin plates (Fig. 1b-3) in a close association with ISCMs.

TEM images of the clay mineral grains dispersed on the microgrids are presented
in Fig. 3. Micron-size ISCM plates have diffuse outlines and granular microtextures
due to nano-size subgrains (Fig. 3a-1 and a-2), which are compared to the subparallel
group of nano-thin ISCM plates observed in the cross-sectional FIB slices (Fig. 1). The
electron diffraction pattern shows turbostratic stacking of nano-size subgrains (Fig. 3a-
3). However, the discrete illite grain in Fig. 2a-4 has a platy morphology with a clear
grain boundary similar to the large compact grains of discrete illite in Fig. 1a-2, a-3,
and b-2. The morphology and microtextures of kaolinite grains (Fig. 3a-5) are similar
to those of ISCM grains, with diffuse outlines and granular microtextures due to the
nano-size subgrains. Weathered chlorite plates consist partly of subgrains (Fig. 3b-6).

3.1.2 Saharan dust

The TEM images of FIB slices prepared from three clay-rich particles are presented in
Fig. 4. The particles are dense (Fig. 4a-1) or porous (Fig. 4b-1 and c-1) agglomerates
of nano-thin platelets that are arranged in subparallel anastomosing patterns (Fig. 4a-
2, b-2, and c-2). Lattice fringes of ca. 1 nm indicate the common occurrence of ISCMs
(Fig. 4a-3, b-3, and c-3). Larger compact grains of illite and chlorite are found in the
ISCM matrix (Fig. 5a). Compact dense biotite grain grades to kaolinite as shown in
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Fig. 5b and c. Biotite kaolinitization is a common process in the weathering environment
(Dong et al., 1998; Jeong, 2000; Jeong and Kim, 2003).

TEM images of the clay mineral grains dispersed on the microgrids show illite plates
with clear outlines (Fig. 3b-1) and ISCMs with diffuse outlines (Fig. 3b-1 and 2). The
kaolinite plates have a hexagonal shape (Fig. 3b-3), indicating the higher crystallinity
of kaolinite in Saharan dust, which is in contrast to the irregular kaolinite plate with
a diffuse outline identified in Asian dust (Fig. 3a-5). Another feature of the Saharan dust
distinguishing it from the Asian dust is the occurrence of elongate grains of palygorskite
(inset in Fig. 3b-3).

3.2 Fe content of the clay minerals
3.2.1 Asian dust

EDXS analyses were carried out for two types of clay minerals identified from the TEM
analysis of FIB slices: subparallel groups of thin platelets and individual thick grains.
Undertaking EDXS analysis in a selective manner for each nano-thin plate was impos-
sible due to the limit of the minimum beam size (ca. 50 nm) and the low X-ray counts
from the reduced electron dose used to minimize damage by the beam. The Fe con-
tent, assuming 14 wt% of H,O, was plotted against K content (Fig. 6). The data points
could be categorized into three groups based on the microscopic occurrence of clay
mineral grains analyzed by EDXS. Group A data were obtained mostly from the sub-
parallel groups of nano-thin plates. Group A is clustered in the region bound by ca.
0.5-4.5wt% K and ca. 2.5-10 wt% Fe. Groups B and C contained data for thick grains:
(B) high K (ca. 4.5-8.5wt%)—low Fe (ca. 0-6wt%) and (C) low K (ca. 0—-3 wt%)—high
Fe (ca. 10-26 wt%). The TEM-EDXS data from the FIB slices of Asian dust particles
are summarized in Table 1.

Group A was considered to represent ISCMs whose intermediate K con-
tent indicates a mixture of nano-thin platelets of illite, smectite, and their
mixed-layers. The average ISCM composition of group A is Kj5Cag g9
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(AI1_28Fe8;5MgO_44TiO_01)(AIO_5OSi3_50)O1O(OH)2. The characterization of the nanoscale
mixing and mixed layering of smectite and illite can be undertaken by TEM anal-
ysis of dust particles treated with alkyl ammonium ions, which selectively expand
smectite layers even under the high vacuum of the TEM chamber (Lagaly, 1994;
Jeong et al., 2004). However, the method will require further development before it
can be applied to dust particles. The group B was considered to represent discrete
illite. The average structural formula of discrete illite in dust particles is Ky g4Cag o3
(Al4 g1 Fegf'zzMgo_zzTio_01 )(Aly 66Si3.34)O010 (OH),. This formula of group B are consistent
with values for the reference illites retrieved from the literature (mean of 24 illite
analyses in Table Ill, Weaver and Pollard, 1975; Table 1.7, Meunier and Velde, 2004)
(Fig. 6). The representative formula of reference illites reported in the literature is
Ko.77Cag 01 (Aly 64F€0.17M0.20Tig 00) (Alp.64Sis 36)O10(OH),. The relative proportions of
illite and smectite components could be estimated from the K contents, because K
exists mostly as a fixed cation in the interlayer of illite (Jeong et al., 2004). The relative
proportion of illite and smectite components in ISCMs is ca. 35:65 based on the K
contents of the reference illite (0.77 K) and ISCMs (0.25 K). The proportion of smectite
components is higher than that of the illite component in ISCMs. Group C could be as-
signed to the chlorite with some weathered chlorite (vermiculite or chlorite—vermiculite
mixed layer) and weathered biotite (vermiculite or biotite—vermiculite mixed-layer)
formed during the weathering in the source soils. The average Fe contents of the
ISCMs (5.8 wt%, group A) are higher than those of illite (2.8 wt%, group B) and lower
than those of chlorite (14.8 wt%, group C) (Table 1). One data point plotted near the
origin (Owt% of K and Fe) indicates the presence of kaolinite. Only three kaolinites
were analyzed by EDXS, detecting no Fe.

The EDXS data for the clay mineral grains loaded on the microgrids, assuming
14 wt% of H,O are presented in Fig. 6 and Table 1. Unlike the grains in the FIB slices,
the EDXS analyses of the clay mineral grains on the microgrids could not distinguish
between mineralogical types in the mixture. However, the distribution pattern of the
data is consistent with that of the FIB slices (Fig. 6). The data indicate a slightly higher
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K and Fe contents, compared to the data for FIB slice specimens. This was likely to
originate from the mixture of several clay mineral types in the clay grains loaded on the
microgrids, while clay mineral types could be identified in the FIB slice and separately
analysed by EDXS. In addition, this analysis cannot avoid the ultrafine grains of iron
(hydr)oxide phases mixed in the clay grain. Many data points were plotted on the re-
gions of ISCMs (n = 266, 52 %) and discrete illite (n = 132, 26 %), indicating that the
clay minerals (< 2 um) in the dusts are dominated by ISCMs and discrete illite with a mi-
nor presence of chlorite. The average Fe content of Asian dusts was 7.3 wt% in 2009
(n=159), 6.7wWt% in 2010 (7 = 100), 6.5wt% in 2012 (n = 105), and 6.1 wt% in 2014
(n = 150). The average Fe content of all the analyzed grains (n = 514) was 6.7 wt%.
The average chemical composition of the whole data set (n =514) was Si 21.4, Al
10.7, Fe 6.7, Mg 2.7, Ti 0.2, K 3.9, and Ca 0.7 wt% (Table 1). Clay mineral grains from
Chinese loess samples, which formed the deposits of ancient Asian dust, have been
analyzed by the TEM-EDXS of grains loaded on microgrids (Jeong et al., 2008, 2011).
The average chemical composition of the clay minerals in loess samples was Si 21.3,
Al 12.3, Fe 6.1, Mg 2.7, Ti 0.1, K 2.6, and Ca 0.5 wt%, which is remarkably consis-
tent with the composition of our Asian dust samples. Fe that is not incorporated in clay
minerals is hosted in Fe (hydr)oxides such as magnetite, goethite, and hematite, and
coarse Fe-rich silicate mineral grains such as amphibole, epidote, chlorite, and biotite.
Clay-sized chlorite can be distinguished from coarse-grained chlorite, as large flakes
of chlorite exceeding 10 um in length are commonly found in Asian dust.

3.2.2 Saharan dust

EDXS data of clay mineral grains on the microgrids (n = 356) and FIB slices (n = 116)
are presented in Fig. 6 and summarized in Table 1. The distribution patterns of data
shows similarity to that of the Asian dust, indicating the presence of ISCMs, discrete
illite, and chlorite (also some weathered chlorite and biotite). A remarkable feature of
the Saharan dust that differs from Asian dust is that kaolinitic clay mineral grains are
more abundant in Saharan dust particles than in Asian dust particles, while chloritic
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grains are more abundant in Asian dust (Fig. 6). Thus, compared with the chemical
composition of Asian dust, Al was slightly enriched in Saharan dust, while Fe and K
were slightly depleted. 63 % (n = 225) of the clay mineral grains on the microgrid was
ISCMs. The average chemical composition of clay mineral grains from the whole data
set of microgrid samples assuming 14 wt% of H,O is Si 22.4, Al 11.9, Fe 5.4, Mg
2.5, Ti 0.2, K 2.2, and Ca 0.5wt% (Table 1). The average chemical composition of
clay minerals in Saharan dust is not very different from that in Asian dust. The typical
chemical composition of kaolinite is Al,Si,Og (OH),, but with some Fe replacing Al in
octahedral sites. The average Fe content from the analyses of 14 kaolinite grains is
1.7 wt% in Saharan dust.

3.3 Mineralogical properties of bulk dust

Mineral compositions determined by XRD analysis are presented in Table 2. Due to
the small quantity of samples and low X-ray counts, the data in Table 1 are at best
semi-quantitative. However, mineralogical differences are evident between Asian and
Saharan dusts. Although the quantity of each mineral has a large uncertainty, the sum
of the mineral groups is more reliable. The mineral compositions of three Asian dusts
were compared to the compositions determined by single particle analysis using SEM
and EDXS (Table 2). Despite the differences in analytical methods and their semi-
quantitative nature, the mineral compositions determined by both methods were well
matched, supporting the reliability of the mineral composition data for small bulk dust
samples determined by XRD in this study. ISCMs and discrete thick illite grains could
not be distinguished in both the XRD and SEM single particle analysis. Thus, sum of
ISCMs and discrete illite is presented in Table 2.

A common mineralogical feature in both Asian and Saharan dusts is for the clay min-
erals to be dominated by ISCMs and illite. This is consistent with TEM-EDXS analysis
of clay mineral grains on the microgrids (Fig. 6). A higher total clay mineral content is
a strong mineralogical feature of Saharan dusts, while the quartz and feldspar contents
are higher in Asian dust. Of the clay minerals, chlorite contents were higher in Asian
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dusts. XRD analysis of the preferentially oriented specimens of both the Asian and
Saharan dusts showed 17A peaks of smectite. Although we did not undertake a quan-
titative analysis, the shoulder near the 10.4 A peak to the high angle side of the illite
(001) peak, which did not disappear following heat treatment at 350 °C, indicated the
occurrence of palygorskite as reported by Avila et al. (1996).

4 Iron dissolution from clay minerals
41 ISCMs

The TEM-EDXS analyses of FIB slices showed that the Fe contents of ISCMs, illite,
and chlorite in Asian dust particles are 5.8, 2.8, and 14.8 %, respectively. Although the
average Fe content of ISCMs is lower than chlorite, it is much higher than illite. The
contribution of ISCMs to the Fe released by dust is important compared with other
clay minerals because they are abundant clay minerals in both the Asian (52 %) and
Saharan (63 %) dusts, as shown in Table 1 and Fig. 6.

The dissolution of Fe from silicate minerals depends largely upon physical and chem-
ical factors such as the crystal structure, Fe content, crystallinity, and the surface area
of the minerals (Lasaga, 1995; Nagy, 1995). ISCMs are nano-thin illite, smectite, and
mixed-layered illite—smectite. Thus, the large surface area of Fe-rich ISCMs may lead
to an enhanced release of Fe. Baker and Jickells (2006) suggested that the primary
control on Fe solubility is the surface area to volume ratio of dust particles, which de-
creases during long-range transport due to the preferential removal of larger particles.
Our observations confirm the importance of smaller particles, and in particular probably
the higher ISCM content of long-range transported particles which may make a large
contribution to Fe release.
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4.2 Chlorite

Chlorite has received little attention in previous studies. Fe-rich chlorite is easily de-
composed by acids (Ross, 1969; Kodama and Schnitzer, 1973; Brandt et al., 2003;
Lowson et al., 2005). In Chinese loess, chlorite is weathered much faster than other
silicate minerals (Jeong et al., 2011). Chlorite should be considered in studies of Fe
dissolution from mineral dust. Chlorite content of Asian dusts was ca. 4—6 % as deter-
mined using single particle analysis (Jeong et al., 2014) and 5-7 % in XRD analysis
(this study). In Saharan dusts, the chlorite content was lower at ca. 3 % as determined
by XRD analysis (this study). Although the chlorite content in dust is much lower in com-
parison to ISCMs, the release of Fe from chlorite is likely to be significant because its
Fe content is 3—-6 times higher than in the ISCMs and illite. Takahashi et al. (2011) sug-
gested that chlorite could possibly be transformed into soluble ferrihydrite, after cloud
processing during long-range atmospheric transport. Although we did not determine
the oxidation state of Fe, the structural Fe present in chlorite is known to be dominated
by Fe(ll) (Newman, 1987). In contrast, the structural Fe in the fine ISCMs (dioctahe-
dral illite, smectite, and their mixed layers) is dominated by Fe(lll) (Weaver and Pollard,
1975; Newman, 1987). Thus, trioctahedral clay minerals including chlorite may be an
important source of soluble Fe(ll). The most bioavailable Fe for microbial organisms is
thought to be Fe(ll) (Shaked et al., 2005; Baker and Croot, 2010). Fe(ll) dissolved from
dust is commonly considered to be derived from the photochemical reduction of Fe(lll).
However, Cwiertny et al. (2008) suggested that Fe(ll)-substituted aluminosilicates may
be an important alternative source of soluble Fe(ll), particularly after the reaction of
dust with atmospheric acids. Chlorite grains occur in a diverse size range from individ-
ual large flaky particles of several micrometers (Jeong, 2008; Jeong and Nousiainen,
2014) to nano-thin platelets mixed with nano-thin ISCMs (Fig. 2b-3). Nano-thin chlorite
plates are probably most effective in releasing Fe from dust particles following reaction
with atmospheric acids.
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5 Data supporting a strong contribution of clay minerals to dissolution of Fe

The dissolution of Fe from clay minerals can be investigated by the simultaneous
measurement of Al, Mg, and Si concentrations in solutions subjected to dust addi-
tion. Unfortunately, the concentrations of Al, Mg, and Si in solution have rarely been
reported in previous studies. Buck et al. (2006) determined both the Fe and Al concen-
trations in leached solution after the reaction with aerosols collected on cruises in the
north-west Pacific Ocean. Although Buck et al. (2006) did not discuss the mineralog-
ical implication of the Fe and Al concentrations, their data provide an insight into the
source of the dissolved Fe. The average Fe/Al molar ratio for whole data set (n = 60)
was 0.53 for aerosol concentrations ranging from very low (264 pmol Fe m'3) to high
(48945 pmol Fe m'3). However, particular attention should be given to aerosol sam-
ples obtained during dusty periods to evaluate the Fe solubility of desert dust, because
the high Fe/Al molar ratios in aerosols collected during periods of low loadings are
influenced by a contribution from anthropogenic aerosols that contain large amounts
of soluble Fe (Sholkovitz et al., 2012). Fe /Al molar ratios of 0.25-0.31 in solution after
leaching with deionized water were obtained from four samples collected during a dust
event (> 20000 pmol m~2 Al of filtered air, Table 1; Buck et al., 2006) originating from
Mongolia. The average Fe/Al molar ratio of 0.29 is consistent with the average ratio
of 0.31 obtained from the TEM-EDXS analysis of clay mineral grains of Asian dust in
this study (n = 514, microgrid samples; Table 3). This indicated that all the dissolved
Fe and Al originated from the clay minerals, which suggests that the major source of
leached Fe is not Fe (hydr)oxides, but clay minerals.

The dissolution of Fe from clay minerals in Asian dust is further supported by the
chemical composition of fine particles in the Asian dust. The Fe/Si, Al/Si, and Fe/Al
molar ratios of PM, 5 (< 2.5um) samples collected in Zhenbeitai near the Chinese
desert (Arimoto et al., 2004) were 0.14, 0.51, and 0.28, respectively (Table 3), which
strongly agrees with the average molar ratios 0.16, 0.52, and 0.31 of the clay minerals
obtained using TEM-EDXS analysis in this study. The fine particles of the Asian dust
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(< 2.5um) from Zhenbeitai were likely to be dominated by clay minerals relatively that
were enriched in Fe and Al in comparison to coarse particles. TSP and PM,, samples
included coarse dust particles. The Fe, Al, and Si concentrations in TSP samples used
in dissolution experiments were also determined by Buck et al. (2006). The average
Fe/Si, Al/Si, and Fe/Al molar ratios were 0.10, 0.37 and 0.28, respectively for four
aerosols generated by dust events (> 20 000 pmol m~3Al of filtered air in the Table 1;
Buck et al., 2006). The lower Fe/Si and Al/Si ratios of TSP samples analysed by Buck
et al. (2006) were due to the high quartz content of coarse TSP samples (Table 3).
Nevertheless, the Al/Fe ratio was similar to that in the fine Zhenbeitai dust and that
resulting from our TEM-EDXS analysis, indicating the incorporation of Fe and Al into
the structure of clay minerals. The Fe/Si and Al/Si molar ratios of the TSP samples
reported by Buck et al. (2006) are consistent with the respective molar ratios of PM;,
(0.10, 0.36, and 0.27) samples from Asian dusts (Jeong, 2008) and Zhenbeitai TSP
dust (0.06, 0.25, and 0.25) (Zhang et al., 2003) (Table 3). This elemental data for the
aerosols indicate that Fe and Al are largely incorporated in clay minerals.

In Saharan dusts collected from the Atlantic Ocean, Buck et al. (2010) reported high
Fe and Al concentrations in aerosols collected in the region between 13.4° and 24.4° N.
The source of the aerosols was traced to the Saharan desert. The average Fe/Al mo-
lar ratio was 0.30 in aerosols and 0.29 in deionized water reacted with the aerosols
from four samples with a high concentration of dust (> 20000 pmol m= Al). These ra-
tios are consistent with those reported in other studies (Alastuey et al., 2005; Paris
et al., 2010; Klaver et al., 2011) (Table 3). The average Fe/Al molar ratio of clay min-
erals determined by TEM-EDXS analysis in this study was 0.22, which was lower than
that in aerosols. This is partly due to the high concentration of kaolinite with a low Fe
content in our aerosol samples. Unlike our observations for Asian dusts, Fe/Si and
Al/Si molar ratios did not differ between coarse and fine dust samples (Alastuey et al.,
2005) (Table 3), which is consistent with the clay-rich characteristics of Saharan dusts.
Baker and Jickells (2006) reported an average Fe/Al molar ratio of 0.12 in a leaching
test when fine aerosol was reacted with 1.1 M ammonium acetate (pH 4.7), which is
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significantly lower than the 0.26 obtained for the corresponding fine aerosol, and could
not be explained given that Al was almost exclusively released from minerals in dust.
The evaluation of existing elemental data and comparisons to the corresponding
dissolution data suggests that dissolved Fe and Al are largely derived from the clay
minerals in the aerosols. Although anthropogenic Fe contributes to the Fe leached from
aerosols, it is the Fe associated with clay minerals in mineral dusts that dominates the
leached Fe present in remote ocean environments, particularly during dusty seasons.

6 Summary and conclusions

TEM and EDXS analyses were conducted on mineral dust samples to assess their
contribution to Fe supply due to aerosol dissolution in remote marine environments.
The total clay content of Asian dusts was lower than that of Saharan dusts. TEM anal-
ysis of thin cross-sectional slices of the dust particles revealed that nano-thin platelets
of ISCMs (illite, smectite, and illite—smectite mixed layers) were most abundant in as-
sociation with illite, chlorite, and kaolinite occurring as thicker plates. Asian dusts were
enriched with chlorite relative to Saharan dust, while Saharan dusts were relatively
enriched with kaolinite. Kaolinite in Saharan dust occurred as hexagonal plates that
were better crystallized than in Asian dust. The average Fe content of the ISCMs in
Asian dusts as determined by EDXS was 5.8 % assuming 14 % H,O, while the con-
tents of illite and chlorite were 2.8 and 14.8 %, respectively. The average Fe content
of the EDXS data of the clay mineral grains dispersed and loaded on the microgrids
was 6.7 and 5.4 % in Asian and Saharan dusts, respectively. Molar elemental ratios of
the long-range transported mineral dusts and leached solution indicated that dissolved
Fe mostly originated from clay minerals. Iron-bearing clay minerals are a major source
of Fe in remote marine environments compared to Fe (hydr)oxides. The Fe dissolution
from clay minerals is thought to be enhanced by the nanocrystallinity of ISCMs, and
furthermore, Fe-rich chlorite susceptible to acids may enhance dissolution of Fe.
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Table 1. Summary of average chemical compositions of clay mineral grains (wt%) analysed by =~ ©
TEM EDXS. H,O content of the clay minerals was assumed as 14 %. g G. Y. Jeong and
S E. P. Achterberg
Asian dust Saharan dust §
Microgrid FIB FIB FIB FIB Microgrid  FIB 8
(whole) (Group A, ISCMs) (Group B, illite) (Group C, chlorite) -
n 514 206 140 27 21 356 116 —
Si 21.4 21.7 227 215 16.0 224 224 o
Al 10.7 11.5 11.1 14.0 9.6 119 129 8 )
Fe 67 65 58 28 4.8 54 48 o
Mg 2.7 2.8 25 1.2 6.6 25 2.1 @, y
Ti 0.2 0.1 0.1 0.1 0.1 0.2 0.1 g
K 3.9 2.4 2.2 5.8 0.9 22 19 S
Ca 0.7 0.7 0.8 0.3 0.3 05 0.8 8 n n
g
(72}
@,
S —— :
2
Q
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Table 2. Semiquantitative mineral compositions of Asian and Saharan dusts determined by
XRD analysis with mineral compositions of Asian dusts determined by SEM single particle

analysis for comparison.

Asian dust XRD

Saharan dust XRD

18 Mar 31 Mar 20Mar 16-17 Mar Average 18-23 Jan 28-31 Dec  Average
2014 2012 2010 2009 2008 2007
ISCMs/illite 60 42 50 42 49 71 74 72
Kaolinite 1 3 4 4 3 8 4 6
Chlorite 3 6 7 7 6 3 3 3
Total clay 64 52 61 53 57 81 81 81
Quartz 14 23 15 13 16 10 7 8
Plagioclase 11 15 10 12 12 2 2 2
K-feldspar 0 6 2 1 2 1 1 1
Amphibole 0 1 2 2 1 0 0 0
Calcite 5 2 5 6 5 2 3 2
Gypsum 6 2 6 13 6 4 6 5
Total 100 100 100 100 100 100 100 100
SEM single particle
analysis (Jeong et al., 2014 and this study)®
ISCMs/illite 54 48 54 52
Kaolinite 1 3 2 2
Chlorite 2 4 6 4
Total clay 58 55 62 58
Quartz 19 21 17 19
Plagioclase 11 1 10 11
K-feldspar 4 5 3 4
Amphibole 1 1 0 1
Calcite 7 7 6 7
Gypsum 0 1 1 1
Total 100 100 100 100

@ Mineral compositions were recalculated to include nine minerals and mineral groups. The contents of biotite and muscovite in Jeong
et al. (2014) were merged with that of ISCMs/illite.
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Table 3. TEM-EDXS analysis data of clay mineral grains compared to chemical compositions

of bulk mineral dusts collected on filters and their leached solutions.

Asian dust
Data source This study Arimoto etal.  Buck et al. Jeong Zhang et al.
(2004) (2006) (2008) (2003)
Sample 364 clay 22 PM, 5 4 TSP? 8 PM,, 58 TSP
mineral grains
Method TEM-EDXS ICP-MS GFAAS, ICP-OES PIXE
EDXRF
Molar ratio of total metals
Fe/Si 0.16 0.14 0.10 0.10 0.06
Al/Si 0.51 0.51 0.37 0.36 0.25
Fe/Al 0.32 0.28 0.28 0.27 0.25
Molar ratio of leached solution
Fe/Al - - 0.29 - -
Saharan dust
Data source This study Alastuey et al. Alastuey etal. Buck et al. Paris et al. Klaver et al.
(2005) (2005) (2010) (2010) (2011)
Sample 356 clay 6 PM, 5 6 TSP 4 TSP? 17 TSP 50 TSP
mineral grains
Method TEM-EDXS ICP-OES/MS  ICP-OES/MS  HR-ICP-MS, PIXE, GFAAS, PIXE
EDXRF ICP-AES
Molar ratio of total metals
Fe/Si 0.12 0.10 0.10 - 0.12 0.16
Al/Si 0.55 0.39 0.39 - 0.39 0.43
Fe/Al 0.22 0.25 0.25 0.30 0.29 0.37
Molar ratio of leached solution
Fe/Al - - - 0.29 - -
@ > 20000 pmol Alm ™
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Figure 1. Occurrence of clay minerals in three Asian dust particles (a—c). Panel 1 in each par- % Full Screen / Esc

ticle consists of two SEM images of the original particle (low and high magnifications). Panels @,

. . . . . o

2 and 3 are TEM images of the cross-sectional FIB slice prepared from the particle in panel 1. 5 S ar e Va a
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51/nm

Figure 3. TEM images of clay mineral grains loaded on the microgrid. (a) Clay mineral grains
from Asian dusts, showing ISCM (panel 1), discrete illite (panel 4), kaolinite (panel 5), and
chlorite (panel 6) grains. Panel 2 was magnified from panel 1. Panel 3 is an electron diffraction
pattern of the circled area in panel 2. (b) Clay mineral grains from Saharan dusts showing
illite (panel 1), ISCM (panels 1 and 2), hexagonal kaolinite (panel 3) and elongate palygorskite
(panel 3) grains.
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Figure 4. Occurrence of clay minerals in three clay-rich Saharan dust particles (a—c). Panel
1 in each particle is a low magnification TEM image of the cross-sectional FIB slice prepared
from the original particle. Panel 2 is a TEM image magnified from the TEM image in panel 1.
Panel 3 is the lattice fringe image.
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Figure 5. Occurrence of larger compact grains of illite (a), chlorite (a), kaolinite (b, ¢), and % - -
biotite (b, ¢) in Saharan dust particles. O
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Figure 6. Plots of Fe vs. K from the TEM-EDXS analyses of clay minerals in the cross-sectional
FIB slices of dust particles and clay mineral grains loaded on the microgrids. The boxes indi-
cating groups A, B, and C are drawn on the basis of TEM microtextures and EDXS data for FIB

slices of Asian dust particles.
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